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Power transfer for fractionation

A monolithic spacecraft makes its own power with an expensive 
solar array1, typically $750/W
For missions involving many vehicles in formation, centralizing 
power generation continues to be of interest

Potential cost and complexity savings
Fractionation2 of power collection involves a Resource Vehicle 
(RV) supplying energy to a formation of Mission Vehicles (MV)

Heterogeneous fractionation: solar energy collection separated from 
power conversion
May enable power cost below $100/W by avoiding photovoltaics

Subject of current SS/L study for DARPA of In-Space Power 
Transfer

Concentrated sunlight distribution - avoiding multiple conversions
Architecture, CONOPS and applications assessment
Vehicle and formation design
Cost/benefit and development assessment
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Why concentrated light distribution?

Previous concepts typically involve conversion of sunlight to 
electrical power before distribution

Power distribution as RF is too inefficient 
Net system efficiency ~3%
Major additional losses at large path lengths

Power distribution by lasers is too inefficient
Net system efficiency ~5%

What’s different about this new approach?
Uses mirrors to concentrate, collimate and target direct sunlight to 
formations of fractionated spacecraft over path-length of a few km
Uses low-cost, 30%-efficient heat engines in mission vehicles to avoid 
high-cost solar cells, batteries and electronics
Avoids conversion losses of sunlight to direct current and direct 
current to RF or laser beam
Net system efficiency is 20-25%
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Comparison of Power Transfer Schemes

* Free-space propagation assumes a path-length of 200 m for the RF case, 1000 m for the optical power transfer 
systems

† Rectenna efficiency was obtained from a paper5 by Yoo and Chang
‡ Efficiency for conversion of monochromatic light to electricity is high because the  wavelength of the light is

matched to the band gap of the solar cells.
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Power Distribution from Resource Vehicle (RV)

The RV concentrates solar power collected by a big mirror into a 0.1-m 
diameter beam with intensity of ~100 suns
A formation of MV, each of lower cost than the RV, and possibly of a 
variety of different types, receive the concentrated power in turn
Missions for formations spread over a few kilometers span, or clusters 
of spacecraft, are discussed in the literature6, 7, 8

RV is sun-
pointing

RV is steered around 
the sun-line to direct 
antennas at Earth

Incident
sunlight

Power
Transfer
beam MV
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Benefiting Missions in Capability and Cost

Capability
LEO formation missions needing large apertures of ~1-2 km

High resolution Synthetic Aperture Radar (SAR)
Tactical / theater
Continuous mapping

High resolution optical imaging
Detection of electromagnetic radiation with 100+ m wavelength

Missions needing flexibility in sensor insertion/upgrade
Distributed platforms for correlated sensor suites

NPOESS-like objectives but with relaxed constraints
Missions with payloads too large to launch on a single platform 

Cost & Complexity
Centralized power/other functions enables low cost sensor MVs
MVs do not need to point a power collector while imaging
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Centralization and fractionation

Power collection centralization permits reduction in complexity 
and cost of individual sensor spacecraft in a multi-satellite cluster

The presence of a central power collector spacecraft invites 
centralization of other functions, if effective

Consider cost, mission reliability and fault tolerance, initial formation 
establishment

We are assessing potential centralization of
Mission data aggregation, processing and downlink
Intra-formation data exchange
Formation command and telemetry links
Orbit Determination and control
Attitude Determination and control

Centralization is a form of heterogeneous fractionation
Same opportunities, risks and issues
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System Architecture

Mission Vehicle TT&C and Payload Data could be routed through the 
Resource Vehicle

Data Collection
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Control 
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product

Resource 
Vehicle

Space 
segment 
control

Data on Area of 
Interest and mission 
vehicle status

Mission 
Vehicles

Centralization of TT&C 
and Payload Data as well 
as Power
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RV lifetime: 10-15 years, MV lifetime: 0.5-2 years

System architecture permits nearly continuous upgrade or reconfiguration of 
Mission Vehicle (MV) formation
Specialized MV could provide occasionally upgradeable distributed 
processing -- or initial processing of data might be performed by all MV
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Sensor elements
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Launch
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Low-cost Launch
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(EELV ESPA Ring9)
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Candidate circular formation of spacecraft

The RV would be in the center of the formation and distribute 
power to MV as they traverse a “charging zone”
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Candidate circular formation of spacecraft - 2 

Computer demonstration of formation flying with power transfer
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Candidate linear formation of spacecraft

The MV are arranged in a linear formation in a common orbit and 
the RV is in an orbit with a significant wedge angle to this 
common orbit so that it comes into line-of-sight with each MV

2 km

Relative
motion

Orbital
motion

RV
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Candidate linear formation of spacecraft - 2

Computer demonstration of formation flying with power transfer
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Mission Vehicle (MV) Layout

Within the MV the power transferred from the RV is absorbed as heat 
and then converted to electrical power by a heat engine for use by 
the payload and by the spacecraft bus

Thermal Energy Storage (Hot Reservoir)

Heat Engine

Radiators

Payload, Remainder of Bus

Power Transfer Beam from Resource Vehicle (RV)
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MV overall design

MV size and power level
Small MV

Optimal size might be small to fit within small launch vehicle or 
many MV in medium size launcher, or on EELV ESPA ring9

Larger MV
Fractionated from power-supplying RV to derive benefit in agility 
and stability
Need for any major component of MV to sun-point eliminated

MV size and thermal control
Can thermally isolate low temperature payload such as IR sensor but 
requires dedicate high temperature module
Small MV

Small size tends to require operation at elevated temperature
Deployable radiator may be needed for small MV with high power

Larger MV
Thermal control easier: larger radiator and no need to sun-point
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Power Handling Considerations and Trades - 1

RV beam steering and beam dousing control
Partially douse the beam while acquiring to avoid harm to MV
Total dousing of the beam in a contingency

MV Payload versus bus power
Tactical payload typically requires high power for short duration, 
bus requires more total energy over time but may operate at ~10%
payload power level
Consideration affects energy storage, heat engine sizing

MV energy storage: power transfer occurs ~10% of the time
Thermal energy storage, higher kJ/kg, but storing waste heat that 
will be passed by the heat engine as well as useful heat
Chemical energy storage, stores only electrical energy but 
necessitates a separate battery and supporting components

MV contingency operations
Obtain survival power by directing heat trap at the sun
Sufficient power to operate bus at reduced level, no payload 
operations
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Power Handling Considerations and Trades - 2

MV Heat Engine type
Dynamic – 30+% efficiency, moderate temperature
Thermionic – ~12% efficiency, higher temperature, no moving parts

MV Heat Engine disposition
Power level size for surge vs. continuous operation, or both
Intermittent vs. continuous operation
High power level – run during charging with small thermal energy 
storage and large chemical battery

MV Thermal Energy Storage (TES)
Phase Change Material for near-constant temperature through cycle
Internal heat distribution may require high-temperature conductor grid
Re-radiation: heat leakage through aperture used to admit power 
beam

MV Chemical Battery: Considerable heritage but low kJ/kg
Launch and Early Orbit Operations (LEOP) considerations

MV may be launched separately from RV
Initial power-up of MV hot-side reservoir
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